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Lentiviral vectors in hematopoietic 
stem cell therapies: mainstay 
technology, or simply a bridge  
to gene editing?
Marc Moore & John R Counsell

Hematopoietic stem cells (HSCs) 
are quiescent progenitors to a range 
of blood and immune cell lineages 
with the propensity to repopulate 
these cellular niches. This makes 
them attractive as a cell-based ther-
apy for lysosomal storage disorders 
[1,2], hemoglobinopathies [3] and 
primary immune deficiencies [4,5]. 

Indeed, allogenic identical HLA-
matched HSC engraftment has been 
a mainstay therapeutic approach in 
the field since the 1960s. Howev-
er, such cases of HLA matches are 
rare and finding suitably matched 
donor’s remains challenging. Fur-
thermore, in many cases of allo-
genic HSC transplantation, acute 

graft versus host disease (GVHD) 
remains a significant concern. This 
has fuelled the shift towards use of 
autologous HSC engraftment, in 
which the patient’s own cells have 
functional gene expression restored 
ex vivo before reintroduction.

Lentiviral (LV) vectors based on 
human immunodeficiency virus 

“...the documented clinical success of 
lentiviral therapies surely means that they 
will remain an important tool in genomic 

medicine...”

THE LATEST DEVELOPMENTS  
IN VIRAL & NON-VIRAL VECTOR 
MANUFACTURING
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Type-I (HIV-1) have held long-term 
value in regenerative medicine, due 
to their ability to permanently inte-
grate therapeutic genes into divid-
ing and non-dividing cells. LV-me-
diated HSC therapies have been 
applied successfully in the clinic for 
a range of disease indications [6–9], 
with genomic integration patterns 
showing to be relatively safe, with 
minimal insertions near proto-on-
cogenes and clonal expansions 
[10,11]. However, although further 
engineering of LV vector technol-
ogy [12] and alternative retroviral 
vectors [13,14] may help maintain 
their future development in HSC 
therapies, their scientific novelty is 
rapidly diminishing. As such, there 
is a growing trend towards replacing 
LV vectors with gene editing tech-
nologies in preclinical development, 
with the long-term picture suggest-
ing that LV will be almost wiped-
out in years to come (Figure  1). This 
review will comment on the tech-
nological advantages and limita-
tions of gene editing therapies, with 
respect to how their burgeoning 
popularity could impact on the fu-
ture use of LV vectors in autologous 
HSC therapeutics.

CLINICAL TRANSLATION 
OF GENE EDITING IN HSC 
THERAPIES: RAPID  
PROGRESS, BUT  
SIGNIFICANT  
CHALLENGES REMAIN
Conventional gene editing utilizes 
designer endonucleases that can 
be targeted to and directly cleave 
the genome at defined sequences, 
of which there are four main class-
es: Meganucleases (MGN) [15,16], 
Zinc Finger Nuclease (ZFN) [17], 
Transcriptional Activator Like ef-
fector Nucleases (TALENs) [18] 
and the most current Clustered 
Regularly Interspaced Palindromic 
Repeat/ Cas9 (CRISPR/Cas9) (for 
detailed review see [19]). Through 
the exploitation of diverse cellular 
DNA repair pathways, the double 
stranded break (DSB) induced 
by these reagents can then be re-
solved in a manner that directly 
modifies the patient’s genome and 
by extension the disease-causing 
mutation. Two canonical cellu-
lar DNA damage pathways that 
can be exploited to enable gene 
correction, addition and deletion 
or disruption include: non-ho-
mologous end joining (NHEJ) 

ff FIGURE 1
The emergence of gene editing technologies in HSC therapies. 

Grant statistics obtained from Grantome.com show that since the turn of the decade, LV vectors have steadily been replaced by gene 
editing technologies in preclinical development of HSC therapies.
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characterized by direct ligation 
of two DNA termini with inter-
vening small sequence insertions 
and deletions (InDels), and ho-
mology-directed repair (HDR) in 
which precise modification of the 
DNA can be achieved through the 
introduction of a DSB with an ex-
ogenous repair template [20].

Gene editing of autologous 
HSCs has rapidly progressed over 
the last decade, with ZFN-edited 
HSCs now in clinical trial for treat-
ment of HIV and sickle cell disease 
[21,22]. CRISPR/Cas9 has steadily 
become a dominant tool in preclin-
ical development of HSC therapies, 
but its potential for broad applica-
tion in the clinic has recently faced 
significant questions.

A recent preprint has highlight-
ed a potentially important limita-
tion of CRISPR/Cas9 therapies, 
in which anti-Cas9 were detected 
in healthy human sera [23]. Anti-
bodies against Staphylococcus au-
reus Cas9 and Streptococcus pyogenes 
Cas9 were detected in 79% and 
65% of samples, respectively. Addi-
tionally, anti-Cas9 T cell responses 
were detected at rates of 46% to 
saCas9. This undoubtedly has im-
portant implications for systemic 
expression of Cas9 for body-wide, 
in vivo gene editing, although its 
relevance to ex vivo HSC therapies 
is of less concern if Cas9 expression 
can be restricted to transient dura-
tion prior to transplantation. Thus, 
the delivery system of gene-edit-
ing reagents and the resultant ex-
pression profile remain continual 
and ongoing considerations for 
developing therapeutic strategies. 
As such, Cas9 has been delivered 
to HSCs as plasmid (DNA) [24], 
mRNA [25] and Ribonucleotide 
protein complexes [26]. The shift 
towards the use of ribonucleotide 

proteins (RNPs) in the field is oc-
curring in the pursuit of ‘hit and 
run’ gene editing, in which the ex-
pression of the Cas9 protein is high 
albeit transient.

Additionally, recent data has 
highlighted that deleterious geno-
toxic events could occur in some 
gene editing scenarios, where large 
deletions and chromosomal rear-
rangements followed DSB repair, 
leading to chromosomal instabil-
ity [27]. Damage associated with 
DSBs could be minimized through 
stringent design and validation of 
single-guide RNAs (sgRNAs), to 
minimize ‘off-target’ effects, which 
can occur at unintended genom-
ic sites containing up to six mis-
matches to the sgRNA sequence 
[28]. Multiple strategies are being 
employed to address this, such as 
empirical research to aid and in-
form in silico guide design [29–31] 
and a multitude of genome wide 
off-target assessment methods such 
as guide-seq [28], digenome-seq 
[32] and circle-seq [33] to permit 
judicious sgRNA selection. Protein 
engineering of the Cas9 endonu-
clease has also been undertaken and 
has resulted in numerous variants, 
including nickases [34], Cas9-fokI 
fusions [35] and high-fidelity vari-
ants with ‘neutralizing base’ substi-
tutions at the RNA-DNA interface 
[36,37].

Optimizing the delivery and 
specificity of current gene editing 

“Translational gene editing also faces 
complex logistical challenges, given that an 
entire preclinical development pathway will 
theoretically be required for each individual.”
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technologies are of crucial impor-
tance to efficient therapeutic gene 
editing, but a further technical 
challenge lies in the scalability 
of this approach and biasing the 
cellular DNA repair pathway to 
the appropriate DSB resolution 
pathway. Many therapeutic HSC 
strategies are reliant upon HDR to 
achieve genetic correction, which 
is a particularly inefficient process 
in quiescent HSCs, due to HDR 
and NHEJ working antagonis-
tically throughout the cell cycle. 
A multitude of approaches have 
sought to bias cellular DNA cor-
rection to a HDR repair profile, 
including small molecule inhibi-
tors that target and supress range 
of protein mediators throughout 
the NHEJ DNA repair pathway 
(reviewed in [38]), cellular syn-
chronisation to late G2/S phases 
[39] and overexpression of HDR 
protein mediators [40,41]. How-
ever, the long-term effects of these 
pharmacological treatments on 
the propensity of HSC to under-
go self-renewal and differentiation 
remains to be determined. In ad-
dition, integration methods inde-
pendent of conventional HDR are 
subject of on-going investigation 
and studies including homology 
independent transgene integration 
(HITI) [42], microhomology end 
joining (MMEJ) [43] and Rad51 
independent single strand anneal-
ing (SSA) integration [44].

An alternative method being ex-
plored for HSC gene editing is ‘base 
editing’, which theoretically would 
not be restricted to particular 
phases of the cell cycle. Base edit-
ing is mediated through delivery of 
Cas9 orthologues fused to enzymes 
that catalyze single nucleotide 
mutations. The first generation of 
these utilized APOBEC-mediated 

cytidine deamination to affect a 
C•G to T•A transition [45] and 
was later expanded to adenine de-
aminases with the ability to con-
vert A•T to G•C base pairs [46]. 
The main advantage of the tech-
nology is that resulting genomic 
lesions are primarily composed of 
single-stranded ‘nicks’ and thus 
less deleterious to the genome than 
full DSBs. Notably, low level DSB 
events do occur with this system, 
inspiring further optimisation of 
base editors by limiting DSB for-
mation with additional modifica-
tions [47] and directed evolution 
strategies [46]. Furthermore, fusion 
of these base editing enzymes to 
other Cas9 orthologues has served 
to further expand the scope of po-
tential sites that could be edited 
and improve amenable delivery 
strategies [48].

As outlined previously, LV tech-
nology has been successfully applied 
in scenarios suited to unregulated 
expression of the therapeutic trans-
gene. However, as HSC gene ther-
apy expands though an increasing 
range of disease indications, it may 
be necessary to incorporate more so-
phisticated transcriptional control 
over transgenes that may not be ap-
propriate to constitutive expression. 
Although this has been successfully 
applied to treatment of beta-thalas-
semia, the use of complex non-cod-
ing sequences in some vectors has 
led to aberrant transcriptional 
effects in clinical trials [49]. Har-
nessing of endogenous gene regula-
tion is likely to present a favorable 
approach for the treatment of the 
majority of disease indications. But 
in some cases, supraphysiological 
expression of the transgene prod-
uct is an important feature of LV-
HSC therapies, in order to provide 
adequate cross-correction of the 
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required tissues [50–53]. In these 
cases, endogenous gene expression 
levels may not be sufficient, mean-
ing that conventional gene editing 
would be unfavorable.

Translational gene editing also 
faces complex logistical challeng-
es, given that an entire preclinical 
development pathway will theoret-
ically be required for each individ-
ual genomic target. Additionally, as 
we have described in previous sec-
tions, gene editing therapies have 
very precise requirements in their 
design, which currently restricts 
the application of a single tech-
nology to the treatment of all pa-
tient genotypes for a given disease 
indication. Indeed, CRISPR/Cas9 
methodologies are far more diverse 
than LV designs, which could per-
mit treatment of a broad range of 
genotypes. But this creates a poten-
tial headache from a commercial 
perspective, as a single company 
would likely need to acquire ac-
cess to multiple patents in order to 
treat the majority of patients with-
in a single disease area. Either that, 
or firms would need to be built 
around a single CRISPR/Cas9 
platform technology and spread its 
application across a broader range 
of diseases. Either way, it is likely 
that commercial gene editing ther-
apies will follow a different path to 
those incorporating LV.

CONCLUDING REMARKS
With LV vectors providing the abil-
ity to treat the vast majority of pa-
tient genotypes, along with grow-
ing evidence for clinical safety and 
efficacy, it is likely that their use 
will hold long-term value in ex vivo 
regenerative medicine. But specif-
ic diseases and mutations might 

necessitate use of gene editing in 
scenarios requiring strict regula-
tory control over the therapeutic 
gene. The most likely scenario is 
that both LV vectors and gene edit-
ing technologies will acquire niche 
applications in the clinic, with 
their use dictated by the charac-
teristics of a given disease and the 
common genotypes across patient 
populations. The shift in populari-
ty towards gene editing in preclin-
ical studies can of course be partly 
explained by the diminishing nov-
elty of LV technology, although 
the documented clinical success 
of LV therapies surely means that 
they will remain an important tool 
in genomic medicine for years to 
come.
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